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Abstract 

Nipah virus (NiV) is a newly detected highly pathogenic virus with ability to 
cause devastating morbidity and mortality (an estimated 100% in some cases) 
rate among the human populations. This emerging infectious disease has 
become one of the most alarming threats of the public healths in Bangladesh 
mainly due to its periodic outbreaks (as it strikes almost every year) and the 
highly devastating mortality rate. In this paper, we propose a mathematical 
model describing the host-pathogen interactions in terms of ordinary 
differential equations (ODEs). The main aim is to investigate the disease 
propagation and control strategy of NiV infections. The behaviour of the 
dynamics of NiV infections has been illustrated by the numerical simulations. 

1. Introduction 

Bangladesh has been the most risky geographic distribution for 
several epidemic and infections diseases like the newly detected deadly 
Nipah virus (NiV) infections in the south-east region of Asia [23]. The 
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very recently occurred and even the periodical outbreaks of Nipah virus 
infections indicate the serious alarming and devastating threats of the 
public healths in Bangladesh as well in the world. The outbreaks of NiV 
infections in Bangladesh are assumed to be the most alarming and thus 
the significantly different in epidemiologic and clinical features [9] 
because of the fact that they have been occurring every year (except 2002 
and 2006) since the first detection of Nipah virus and its devastating 
infections in Bangladesh in 2001. 11 outbreaks have already occurred 
from the years 2001 to 2013 (until 6 April, 2013), causing 167 deaths 
among the identified 209 as seriously infected by NiV with the average 
mortality rate of 80%. A statistics of the chronological outbreaks of NiV 
infections and the increasing average mortality rate is shown in Table 1. 
From the Table 1, we see that only in the years 2011 and 2012, the 
mortality rate is 100%, which is of course a great threat for the global 
public healths along with Bangladesh. However, steps for proper 
treatments and control strategies should be taken immediately right 
now. Although significant numbers of research have been carried out 
individually and/or jointly in the Institute of Epidemiology, Disease 
Control and Research (IEDCR) and the International Center for 
Diarrhoeal Disease Research, Bangladesh (ICDDR,B) with the other 
national and international collaborations on this deadly virus and 
mentionable research works have been published in the internationally 
reputed journals, the world health expertise should pay special attention 
to end this highly fatal disease for ever from Bangladesh. Otherwise, it 
may pose a significant threat to global health if the outbreaks become 
more widespread with an average mortality rate of 79%, since this is a 
virus that is devastating to the families affected. We refer readers to    
([2], [6], [14], [16], [21], [22], [23] and the references within) for more 
detailed study on NiV infections and to ([3], [4], [5], [20]) for some recent 
developments of other communicable diseases. 
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In this paper, we attempt to propose a dynamic model of NiV 
infections and discuss its possible control and preventive strategy via 
optimal control techniques. Dynamic models of ‘NiV ’-like zoonotic viruses 
and their evolutions were discussed in [1]. In the vein of [1], Biswas in [2] 
(see also [6]) proposed a mathematical model of NiV infections in the 
form of “SIR”-type epidemic model and discussed its possible 
transmissions in context of Bangladesh. The aim of this study is mainly 
to extend the NiV model proposed in [2] by introducing two control 
variables in the model and thus reformulate the dynamical model of NiV 
infections in terms of ordinary differential equations. We solve the model 
numerically and then analyze the behaviour of the disease dynamics. A 
control strategy is proposed by the illustrations of numerical simulations. 
Before going to in-depth analysis of the model, it is worth presenting a 
brief discussions on NiV infections and disease transmissions in 
Bangladesh for the readers convenient. 

2. NiV and its Outbreaks in Bangladesh 

Nipah virus (NiV), of the family Paramyxoviridae and the genus 
Henipavirus, is a zoonotic (as it is transmitted from animals to humans) 
virus that causes outbreaks of fatal encephalitis in humans [9]. The 
human Nipah virus (NiV) infection was first recognized in a large 
outbreak of 276 reported cases in peninsular Malaysia and Singapore 
from September 1998 through May 1999 (see, for example, [8], [10], [11], 
[18], and [24]). The virus was first isolated from a patient from Sungai 
Nipah village in Malaysia and the name ‘Nipah’ was first introduced 
according to the name of that village. Most of the cases presented 
primarily with encephalitis and mortality rate of 39%, had close contact 
with sick pigs [25], which indicates that the host of NiV infections in 1998 
at Malaysia outbreaks was the pigs. However, large fruit bats of the 
genus Pteropus appear to be the natural reservoir of NiV and the pigs are 
assumed to be infected from those fruit bats. The possible ways of how 
the pigs might be infected from the fruit bats in Malaysia outbreaks were 
discussed in [18]. 
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NiV was first detected in Bangladesh in 2001. It was also identified 
in India for the first time in 2001 and second time in 2007 (see Figure 2). 
Unfortunately, 11 (eleven) outbreaks have already occurred in Bangladesh 
since the first detection of NiV in 2001, with highly mortality rate an 
estimated 80% in an average and 100% in some cases (see Table 1). The 
most alarming fact is that almost every year in winter (December to 
March), the deadly NiV strikes in the north and western regions of 
Bangladesh. Until at the end of 2008, about 14 districts of Bangladesh 
were affected by NiV outbreaks (see Figure 1), which at the end of 2013, 
have been expanded to more than 22 districts of north-western and 
central regions of Bangladesh (see Figure 2). 
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Figure 1. NiV affected areas (i.e., ‘NiV belt’) in Bangladesh until at the 
end of 2008. 

In Malaysian outbreaks, NiV was transmitted to human via the sick 
pigs. Since the natural reservoirs of Nipah virus are fruit bats, so the 
pigs are supposed to become infected by eating fruits partially eaten and 
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thus contaminated by the fruit bats with their urine and saliva. However, 
NiV outbreaks in Bangladesh remain devastating because of the mode of 
transmissions. In the early stage, Nipah virus is supposed to be 
transmitted through the date palm sap from its natural reservoirs, i.e., 
fruit bats in addition to the case discussed above. When people drink the 
contaminated date palm sap, they become infected by the Nipah virus. 
Once people have been infected by the NiV either by eating the partially 
eaten and contaminated fruits or by drinking the contaminated raw date 
palm sap, the virus spreads into human to human because of its serious 
infectivity. At least one case was reported that a doctor died due to NiV 
infection while giving the healthcare to a NiV infected patient in 
hospital. A schematic diagram of possible Nipah virus transmissions in 
Bangladesh is shown in Figure 3. 
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Figure 2. NiV affected areas (i.e., ‘NiV belt’) in Bangladesh at the end of 
2013. 
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Figure 3. A schematic diagram of possible NiV transmissions in 
Bangladesh [2]. 
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Table 1. Outbreaks of Nipah virus infections in Bangladesh, 2001-2013 
[19] 

Outbreaks 
(Years) 

Infected 
people 

No. of deaths 
Percentage 

(%) 
Remarks 

2001 13 9 69% – 

2002 0 0 0 No outbreak occurs 

2003 12 8 67% – 

2004 67 50 75% – 

2005 12 11 92% – 

2006 0 0 0 No outbreak occurs 

2007 20 13 65% – 

2008 10 9 90% – 

2009 4 1 25% – 

2010 17 15 88% – 

2011 24 24 100% – 

2012 6 6 100% – 

2013 24 21 87.5% – 

Total 209 167 80% 
Average mortality 

rate 

3. Mathematical Model 

Mathematical models have become important tools in analyzing the 
spread and control of infectious diseases. An efficient preventive and 
control measure of the spread of a life-threatening pathogen mainly 
depends on an essential understanding the mechanisms of that pathogen. 
Mathematical models of infectious diseases in human have been used to 
increase our understanding of these mechanisms and to test hypotheses 
about effective methods for prevention and control of infectious diseases 
in humans. The transmission interactions in a population are very 
complex, so it is difficult to comprehend the large scale dynamics of 
disease spread. Understanding these interaction characteristics can lead 
to better approaches to decreasing the transmission of diseases. 
Mathematical models are used in such comparing, planning 
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implementing, evaluating, and optimizing various detection, prevention, 
therapy and control programs. We recall that NiV is a newly detected 
highly emerging pathogen and no proper drugs and/or vaccines are 
available yet for it’s treatments. So, it is essential for the physicists and 
biologists to understand the disease mechanisms in the human body in 
order to find out effective methods for prevention and control. 

Human NiV is a zoonotic virus and thus transmitted first from 
animal to human. Once it has been transmitted to human, then it 
continues to be transmitted through human to human (H2H) by the close 
contact of infected individuals due to it’s highly infectivity. So, the 
dynamics of Nipah virus (NiV) infections can be described by an SIR type 
infectious disease model in the form of a set of ordinary differential 
equations (ODEs). Let us suppose that ( ) ( ),, tItS  and ( )tR  denote the 

number of individuals in the susceptible, infectious, and recovered 
classes at time t. The total population at time t is represented by                 

( ) ( ) ( ) ( ).tRtItStN ++=  The susceptible (S ) individuals are those able to 

be infected by the disease parasite. It is assumed that all people are 
susceptible by born. The infectious (I ) individuals are those who are 
infected and able to transmit the parasite to others and the recovered (R) 
individuals are those who have recovered and thus are immune or have 
died from the disease and do not contribute to the transmission of the 
disease. 

3.1. NiV epidemic model 

We recall that the basic SIR epidemic models are used to describe 
rapid outbreaks that occur in a short duration of time (e.g., less than one 
year). Since the time period is short, no vital dynamics (births and 
deaths) are considered in this model. From the disease analysis, we see 
that Nipah outbreaks occur in a very short duration of time (e.g., 3-4 
months) and also Nipah is a zoonotic virus, such type of disease model 
was discussed in [2] (see also [1], [6], and [15]). Considering all these as 
well as the main two transmission routes of Nipah infections in 
Bangladesh, we take the NiV model as the following ordinary differential 
equations: 
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( ) ( ) ( ) ( ),1 tSutIN
tStS −β−=  

( ) ( ) ( ) ( ) ( ) ( ),2 tIutItIN
tStI −γ+α−β=  

( ) ( ) ( ) ( ),21 tItIutSutR γ++=  (1) 

with the initial conditions 

( ) ( ) ( ) .00and,00,00 000 ≥=≥=≥= RRIISS   (2) 

In model ( ) β,1  is the incident coefficient representing the average 

number of adequate contacts (i.e., contacts sufficient for transmission) of 

a person per unit time, then N
Iβ  is the average number of contacts with 

infected individuals per unit time of one susceptible, and SN
Iβ  is the 

number of new cases per unit time due to the susceptibles. This form of 
the horizontal incidence is called the standard incidence (see for details 
[15]). The simple mass action law ,ISη  with η  as a mass action 

coefficient, is also sometimes used for the horizontal incidence. In this 
case, the parameter η  has no direct epidemiological interpretation [15], 

but comparing it with the standard formulation, it shows that ,Nη=β  so 

that this form implicitly assumes that the contact rate beta increases 
linearly with the population size. However, it is shown in [15] that the 
standard incidence is more realistic for human diseases than the simple 
mass action incidence. The term Iγ  represents the recovery rate with the 

recovery coefficient γ  and Iα  is the disease induced death rate with the 

coefficient .α  

We introduce two additional variables representing controls denoted 
by ( )21, uuu =  in the dynamics. As we discussed before, no proper 

treatment (neither by vaccination nor appropriate drugs) is available for 
NiV infections till now. The only ways to control the disease and/or 
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prevent people from being infected by Nipah virus are (i) before outbreak: 
huge mass and educational campaigns among the people of the risky 
areas so that they can be motivated from drinking raw date sap and       
(ii) after outbreak: the family members and relatives of the infected 
patients as well as the health-care givers (e.g., doctors and nurses) should 
follow ‘social distances’ [26] so that no more H2H infections occur. So our 
controls ( )tu1  measure the effort needed to increase mass and 

educational campaigns, reducing the effective transmission rate β  and 

( )tu2  measure the effort required social distancing while administering 

antiviral drug treatment and/or giving health cares to novel the infected 
individuals. We assume that our control functions are bounded and 
Lebesgue measurable on the interval [ ],,0 T  where T denotes a pre-

selected length of time during which these controls are applied. 
Furthermore, wherever a full effort is being placed on mass campaign or 
social distancing at time t, we would have that ( )tu1  and ( )tu2  must be 

equal to one. Moreover, when no effort is being placed in these controls at 
time t, then ( )tu1  and ( )tu2  are equal to zero. Under the above settings, 

we define the controls taking values in measurable control set 

{( ( ) ( )) ( ) [ ]}.,0.a.e,2,1,10:, 21 TtitututuU i ∈=≤≤=  

Our objective is to be chosen as the cost functional 

( ( ) ( )) ( ) ( ( )) ,2
1,Minimize 2

2
2
11

0
21 dttuBuBtItutuJ

T
++= ∫   (3) 

where 1B  and 2B  are weight parameters balancing the costs. 

From the characteristics of the NiV infections, it is clear that the 
outbreaks of NiV occur for a short period of time. In Bangladesh, all the 
previously occurred NiV outbreaks lasted for 2-4 weeks and resulted in a 
devastating consequences of high mortality. In this regard, the dynamics 
of NiV infections can appropriately be described by the epidemic model 
presented in (1). 
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Table 2. Parameters and constants with clinically approved values [1] 

Parameters and constants Definition of parameters Clinical values 

β  Incidence coefficient 0.75 

γ  Recovery rate 0.1 

α  Disease induced death rate 0.15 

T Number of days 50 

0S  Initial susceptible population 1000 

0I  Initial infected population 5.0 

0R  Initial recovered population 0 

N Initial population 1005 

4. Analysis for Optimal Solution 

It is easy to see that our proposed model in (1) can be reformulated in 
the following optimal control form: 

( )

( )( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )

( ) [ ]

( )

( )




















∈

=

∈

+=

+ ∫

,

,0

,.a.e1,0

,.a.e

tosubject

,Minimize

0

0

ETx

xx

ttu

ttutxgtxftx

dttutxLtxl

P

T

 

where R⊂E  and the functions are 

( ) ( ) ( )( ),, tItStx =  

( )( ) ( ),tItxl =  

( ) ( ( ) ( )),2
1, 2

22
2
11 tuBtuBuxL +=  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ,, 





 γ+α−ββ= tItIN

tStIN
tSxf  

( )
( )

( )
( ) ( ( ) ( )).,and

0

0
21 tututu

tI

tS
xg =














−

−
=  

We define the Hamiltonian 

( ) ( ) ( ) ( ).,,,, uxLuxgpxfppuxH λ−⋅+⋅=λ  

The necessary conditions of optimality for optimal control problem (P) 
can be obtained by applying the well-known Pontryagin Maximum 
Principle for optimal control problem. In vein of [28], the necessary 
conditions give closed forms for the controls (taking into account the 
control constraints) of our problem. It is worth mentioning that our cost 
is convex in u and the dynamics are linear in u. In such case, the optimal 
solution of our model is guaranteed by [13]. 

Suppose that ( )∗∗ ux ,  is the optimal solution of the above problem. 

The maximum principle in [28] asserts the existence of an absolutely 
continuous function p and a scalar 0≥λ  such that 

(i) ,0>λ+∞p  

(ii) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ) ( )),, tutxLtutxgtptxftptp xxx
∗∗∗∗∗ λ−⋅+⋅=−  

(iii) ( ) ( ( )) ( ) ( ( ) ( )) ( ) ( ( )) ( )tutxgtptutxLtutxgtpUu ∗∗∗∗∗ ⋅≥λ−⋅∈∀ ,,  

( ( ) ( )) .,a.e, tutxL ∗λ−  

together with the transversality condition ( ) ( ) .,,0 R∈= wwTp  

Let us consider that ( ) ( )., is pptp =  Then we deduce from (iii) an 

explicit characterization of the optimal control pair ( ( ) ( ))tutu ∗∗
21 ,  given in 

terms of the multipliers p as 
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.1,,0maxmin,1,,0maxmin
21























 −















 −

B
Ip

B
Sp is  

We note that the total population is ( ) ( ) ( ) ( )tRtItStN ++=  and the 

state variable R does not appear in other differential equations. Since it 
can be obtained by ( ) ( ) ( ) ( ),tItStNtR −−=  so this is disregarded while 

solving the optimality systems. 

5. Numerical Results 

We performed numerical simulations to obtain the optimal control 
schedules for our model in different scenarios. To do these simulations, 
we used the nonlinear optimal control solver “ICLOCS”, version 0.1b [12]. 
“ICLOCS” is an optimal control interface, implemented in Matlab, for 
solving the optimal control problems with general path and boundary 
constraints and free or fixed final time. “ICLOCS” uses the “IPOPT” 
solver, which is an open-source software package for large-scale 
nonlinear optimization [29]. 

Considering a time interval of 50 days, a time-grid with 1000 nodes 
was created, that is, for [ ],50,0∈t  we get .05.0=∆t  All initial values 

and the parameters used in our analysis are presented in Table 2, which 
are similar as in [2] (see also [1] and [6]). Since we used a direct method 
and, consequently, a iterative approach, we imposed an acceptable 

convergence tolerance at each step of .10 9
rel

−=ε  

For the convenience of comparing the results, we run the program 
taking both ‘without control’ and ‘with control’ into account, but the same 
cost as in (3). We first solve the model when no control measures were 
initiated for the treatment. The result obtained in this case is presented 
in Figure 4. 
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Figure 4. The disease behaviour of different population sizes in absence 
of control measures. 

From Figure 4, we observe that the infectious class first increases 
from an initial state 0I  near zero, reaches a peak, and then decreases 

toward zero over a finite interval of time. The susceptible class ( )tS  

always decreases, but the final susceptible class is positive, this is 
because of the decreasing nature of the function S over time t. On the 
other hand, according to the basic reproductive number ,10 >R  the 

figure of infectious class says that such epidemic occurs and continues in 
a certain region. However, the epidemic can be prevented if it is possible 
to satisfy the condition ( ) .100 <SR  Thus, if the initial susceptible 

fraction has been reduced to less than ,1
0R  for example, by 

immunization, then an epidemic can be prevented and this can be 
achieved by preventing the susceptible people from being infected by 
mass campaigns and social distances. 
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Next, we solve for the optimality systems of our proposed model when 
the two control measures were introduced to prevent the infections. We 
run the program considering the weight parameters 1.01 =B  and 

.5.02 =B  The simulation results for the optimal states (i.e., individual 

population class) and the controls are shown in Figure 5. 
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Figure 5. Optimal trajectories for the susceptible and infectious classes 
and optimal controls: Mass campaigns and social distances with weight 
parameters 1.01 =B  and .5.02 =B  
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Now we take the weight parameters 5.01 =B  and 1.02 =B  and we 

run the optimality systems. The simulation results for the optimal states 
(i.e., individual population class) and the controls are shown in Figure 6. 
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Figure 6. Optimal trajectories for susceptible and infectious classes and 
optimal controls: Mass campaigns and social distances with weight 
parameters 5.01 =B  and .1.02 =B  
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We also run the program considering the weight parameters        
=1B 1.02 =B  and 5.021 == BB  and the simulation results for the 

optimal states (i.e., individual population class) and the controls are 
shown in Figures 7 and 8, respectively. 
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Figure 7. Optimal trajectories for susceptible and infectious classes and 
optimal controls: Mass campaigns and social distances with weight 
parameters 1.01 =B  and .1.02 =B  
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Figure 8. Optimal trajectories for susceptible and infectious classes and 
optimal controls: Mass campaigns and social distances with weight 
parameters 5.01 =B  and .5.02 =B  



OPTIMAL CONTROL OF NIPAH VIRUS (NIV) … 101

From our above analysis and figures, it is easy to compare that the 
control induced model gives a better preventive and control strategy for 
the spread of diseases transmissions and thus control the infections. It is 
worth noting that the weight parameters balancing the cost play 
important role in this control strategy. Less weight value of the 
respective control function gives the maximum effective control strategy. 

6. Conclusion 

NiV infection is a highly pathogenic epidemic disease in the south-
east Asian countries, mostly in Bangladesh. It is suspected that if the 
present trends of NiV outbreaks in Bangladesh continue, then it is not 
surprising that in our globally connected world, humanity could face its 
most devastating pandemic. As there is no proper treatment with 
effective drugs and/or vaccines available until to date, ‘mass awareness’ 
as well as ‘social distances’ are the only ways to prevent and control 
people from being infected by the NiV. Such a control strategy is 
discussed via a mathematical model of NiV infections in terms of 
ordinary differential equations. In absence of proper drugs available, our 
proposed results can be of help in controlling and preventing the 
diseases. 
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